

Construction of Photosynthetic Antenna Complex Using Light-harvesting Polypeptide- α from Photosynthetic Bacteria, *R. rubrum* with Zinc Substituted Bacteriochlorophyll α

Morio Nagata, Mamoru Nango,* Ayumi Kashiwada, Shuhei Yamada, Seiji Ito, Naoko Sawa, Makiko Ogawa, Kouji Iida,[†] Yukihisa Kurono,^{††} and Toshiaki Ohtsuka

Department of Applied Chemistry, Faculty of Engineering, Nagoya Institute of Technology, Nagoya 466-8555

[†]Nagoya Municipal Industrial Research Institute, Nagoya 456-0058

^{††}Department of Pharmaceutics, Faculty of Pharmaceutical Engineering, Nagoya City University, Nagoya 467-8603

(Received November 6, 2002; CL-020945)

The light-harvesting (LH)- α polypeptide isolated from *R. rubrum* only organized zinc bacteriochlorophyll α (Zn-BChl α) complex in n-octyl- β -D-glucopyranoside (OG) micelle, analogous to the LH1-type complex of photosynthetic bacteria.

The light-harvesting (LH)- α and - β polypeptides of photosynthetic bacteria organize a bacteriochlorophyll α (BChl α) complex according to cooperative interactions between the LH polypeptides and BChl α so that an efficient energy transfer between bacteriochlorophylls may occur.¹⁻⁴ It is interesting that the histidine residue in the hydrophobic core of the LH- α and - β polypeptides in the LH complex coordinates with a Mg atom in the BChl α , and tryptophan or polar amino acid residue at the C-terminal segment of the LH polypeptides may bind with the C3 acetyl and C13¹ carbonyl groups of BChl α by hydrogen-bonding, causing a large red-shift of the Qy absorption band of BChl α .¹ It is known that an equimolar mixture of the native LH- α and LH- β polypeptides, separately isolated from photosynthetic bacteria forms a subunit-type complex with Zn-BChl α in OG micelle at 25 °C and forms a LH1-type complex on cooling the sample to 4 °C, consistent with BChl α .¹ However, the native LH- α or - β polypeptide only does not form the LH 1-type complex with BChl α at 4 °C.¹

In this paper, we first report that LH- α polypeptide, separately isolated from *R. rubrum*, only can assemble the LH1-type complex of photosynthetic bacteria in OG micelle, using Zn-BChl α . The key to the assembly is of providing insight into the reasons why the LH- α polypeptide only forms the LH1-type complex with Zn-BChl α but do not form the complex with BChl α . We selected 1 α -helix polypeptides, Cut- α polypeptide and Type 1 (Scheme 1), which have similar amino acid sequence to the hydrophobic core of the native LH- α polypeptide from photosynthetic bacteria, *R. rubrum*. Cut- α polypeptide and Type 1 were synthesized to see the effects of the amino acid sequence at the N-terminal segment of the LH- α polypeptide on forming the LH complex as well as the sequence at the C-terminal segment. Cut- α polypeptide was prepared as described in our previous paper.⁴ Type 1 was synthesized by the solid-phase peptide

synthesis method on Rink amide resin, using Fmoc-protected amino acids as described previously.^{5a} The desired polypeptides were purified by HPLC. These polypeptides gave their expected molecular mass analyzed by TOF-MS (Cut- α : 4854, Type 1: 4030). CD spectra of these polypeptides showed α -helical structures in OG micelle (α -helix content, LH- α : 44.2%, Cut- α : 56.8%, Type 1: 35.2%).^{5a} The native LH- α or LH- β polypeptide also was separately isolated from LH1 complex of *R. rubrum*. The molecular assembly of Zn-BChl α or BChl α by LH and its model polypeptides was carried out according to the reconstitution method, and Zn-BChl α or BChl α was obtained as described previously.⁴

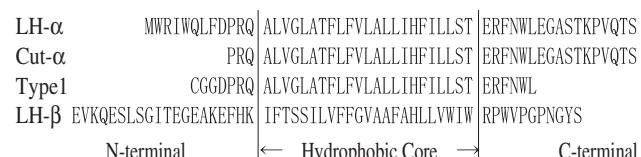
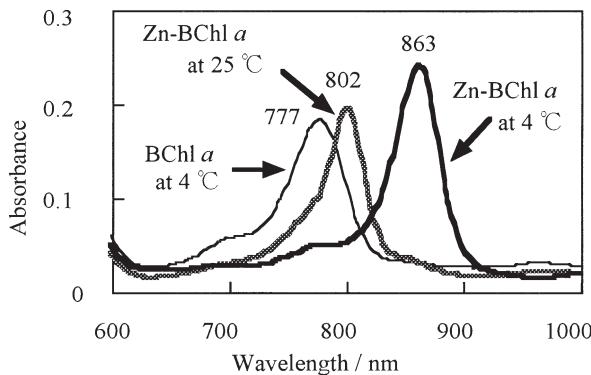

Table 1 shows the Qy absorption bands and CD signals of Zn-BChl α or BChl α in the presence of the native LH- α and - β , the LH- α , the LH- β , Cut- α and Type 1. It is known that an equimolar mixture of the LH- α and - β polypeptides from *R. rubrum* with Zn-BChl α forms the subunit-type complex absorbing 809 nm in 0.78% OG micellar solution at 25 °C, and forms the LH1-type complex absorbing 858 nm at 4 °C, respectively. This is consistent with the complex using BChl α in the presence of the LH- α and - β polypeptides as shown in Table 1.⁵

Table 1. UV-vis. and CD spectral data of Zn-BChl α or BChl α in the presence of the LH polypeptides^a


Polypeptides	BChl α derivatives	Qy band/nm		CD spectra $\lambda_{\text{max}}/\text{nm} (10^{-4}\theta)$
		25 °C	4 °C	
LH- α	[Zn]-BChl α	802	863	866(-20) 837(4.7)
Cut- α		802	863	871(11) 844(-9.6)
Type 1		802	863	872(-24) 845(14)
LH- β		809	830	810(-20) 837(32)
LH- α and - β		809	858	868(7.6) 838(-6.2)
LH- α	BChl α	777 ^d	777 ^d	no signal
Cut- α ^d		777 ^d	871 ^{b,c,d}	882(10) ^d 854(-10) ^d
Type 1		777	874 ^c	882(-19) 851(10)
LH- β		818	818	820(-5.5)
LH- α and - β		818 ^d	870 ^d	883(7.1) ^d 856(-5.7) ^d

^aMeasured in 0.78% OG solution (phosphate buffer pH 7.0), [Zn-BChl α or BChl α] = 2.4 × 10⁻⁶ mol dm⁻³, [polypeptide] = 3.4 × 10⁻⁶ mol dm⁻³. ^bThe Qy band-shift was not reversible with temperature. ^cShoulder at 777 nm. ^dSee in ref. 4.

Figure 1 shows the Qy absorption bands of Zn-BChl α and BChl α in the presence of the LH- α polypeptide only in the OG micelle. The Qy band of BChl α in the presence of the LH- α polypeptide was observed at 777 nm, corresponding to the band of BChl α monomer in acetone (Table 1). Interestingly, the Qy band of Zn-BChl α was red-shifted to 802 nm at 25 °C and further red-

Scheme 1. Amino acid sequences of the light-harvesting polypeptides from *R. rubrum* and their synthetic model polypeptides.

Figure 1. Absorption spectra of Zn-BChl *a* and BChl *a* in the presence of LH- α polypeptide from *R. rubrum* in 0.78% OG solution. Concentrations: polypeptide = 3.4×10^{-6} mol dm $^{-3}$, Zn-BChl *a* or BChl *a* = 2.4×10^{-6} mol dm $^{-3}$.

shifted to 863 nm on cooling the sample to 4 °C, analogous to the subunit-type complex absorbing 809 nm at 25 °C and of the LH1-type complex absorbing 858 nm at 4 °C, respectively. These differences in the Qy band between Zn-BChl *a* and BChl *a* in the presence of the LH- α polypeptide only were not observed for the complex formation using the LH- α and - β polypeptides (Table 1). Small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS) measurements revealed that the radius of gyration for the complex between the LH- α polypeptide only with Zn-BChl *a* in the OG micelle was 3.7 nm at 25 °C from the data of SAXS and 28 nm at 4 °C from the data of DLS, respectively, corresponding to that of the native subunit- and LH1-type complexes, respectively.⁶ Further, a large split-CD signal around the Qy band of Zn-BChl *a* was observed in the presence of the LH- α polypeptide only at 4 °C (Table 1). This large θ value of CD shows the strong excitonic coupling of the Zn-BChl *a* complex induced by the LH- α polypeptide which is similar to that observed in the presence of the LH- β polypeptide only, implying the strong association of Zn-BChl *a* in comparison to that of the BChl *a*. It is considered that a zinc atom in the porphyrin ring strongly binds with imidazole residue of the histidine in comparison to a Mg atom in the porphyrin ring.⁷ These results are consistent with that the binding constant of Zn-BChl *a* complex with the LH- α and - β polypeptides for the subunit-type complex formation is larger by above 100 times than that of BChl *a* complex.¹ Thus, it is considered that the strong association of Zn-BChl *a* with the LH- α polypeptide may affect the LH 1-type complex formation. Resonance Raman spectra indicated that the absorptions of the C3 acetyl and C13¹ carbonyl groups of Zn-BChl *a* were down field-shifted by hydrogen-bonding due to the presence of the LH- α polypeptide in OG micelle, respectively. These UV-vis., CD, SAXS, DLS and Raman spectral data indicate that the LH- α only can form the Zn-BChl *a* complex in the OG micelle, analogous to the subunit-type complex and the LH1-type complex using the LH- α and - β polypeptides, respectively, depending on the temperature.

Alternatively, to see the effects of the amino acid sequence at the N- or C-terminal segment of the LH- α polypeptide on the formation of the LH complex, we examined the molecular assembly of Zn-BChl *a* or BChl *a* using Type 1 and Cut- α , respectively. The Qy band of Zn-BChl *a* in the presence of Type 1 was red-shifted to 802 nm at 25 °C and further red-shifted to

863 nm at 4 °C, which is similar to that seen in the presence of Cut- α or the LH- α polypeptide (Table 1). Further, a large split CD signal at the Qy band of Zn-BChl *a* was observed due to the presence of Type 1, consistent with the signal in the presence of Cut- α or the LH- α polypeptide (Table 1). Interestingly, these red-shifted Qy band of Zn-BChl *a* and the large split CD signal at 4 °C were similar to those seen for BChl *a* (Table 1). Comparing the amino acid sequence at the N-terminal segments of these polypeptides on the LH1-type complex formation with Zn-BChl *a* or BChl *a*, these data indicate that the amino acid residues from M to F at the N-terminal segment of the LH- α polypeptide essentially account for the difference in the complex formation between Zn-BChl *a* and BChl *a*. Thus, it is concluded that amino acid residues at the N-terminal segment cause the difference of the complex formation between Zn-BChl *a* and BChl *a* and no influence of the amino acid sequence at the C-terminal segment on the LH1-type complex formation is observed. Appropriate analogues of the LH- α are useful in constructing an artificial LH complex as well as in providing insight into the effect of polypeptide structure on forming the LH complex of photosynthetic bacteria.

M. N. thanks Dr. P. Parkes-Loach and Prof. P. A. Loach, Northwestern University, U.S.A. for a kind gift of photosynthetic bacteria, *R. rubrum*. M. N. thanks Prof. T. Tanaka, Nagoya Institute of Technology for a helpful suggestion for preparation of the synthetic polypeptide. The present work was partially supported by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan and by Terumo Co., Japan and NEDO International Joint Research Grant, Japan.

References and Notes

- 1 P. S. Parkes-Loach and P. A. Loach, in "Anoxygenic Photosynthetic Bacteria," ed. by R. E. Blankenship, T. M. Madigan, and C. E. Bauer, Kluwer Academic Publishers, Amsterdam (1995), Chap. 21.
- 2 T. Pullerits and V. Sundstrom, *Acc. Chem. Res.*, **29**, 381 (1996).
- 3 G. McDermott, S. M. Prince, A. A. Freer, A. M. Hawthornthwaite-Lawless, M. Z. Papiz, R. J. Cogdell, and N. W. Isaacs, *Nature*, **374**, 517 (1995).
- 4 K. A. Meadows, K. Iida, K. Tsuda, P. A. Recchia, B. A. Heller, B. Antonio, M. Nango, and P. A. Loach, *Biochemistry*, **34**, 1559 (1995).
- 5 a) A. Kashiwada, N. Nishino, Z.-Y. Wang, T. Nozawa, M. Kobayashi, and M. Nango, *Chem. Lett.*, **1999**, 1301. b) A. Kashiwada, H. Watanabe, T. Mizuno, K. Iida, T. Miyatake, H. Tamiaki, M. Kobayashi, and M. Nango, *Chem. Lett.*, **2000**, 158. c) A. Kashiwada, Y. Takeuchi, H. Watanabe, T. Mizuno, H. Yasue, K. Kitagawa, K. Iida, Z.-Y. Wang, T. Nozawa, H. Kawai, T. Nagamura, Y. Kurono, and M. Nango, *Tetrahedron Lett.*, **41**, 2115 (2000).
- 6 The data were analyzed by using standard Guinier analysis (A. Guinier and G. Fournet, "Small Angle Scattering," Wiley, New York (1955)), fitting with a form factor of a sphere. The data indicated that the diameter of the complex corresponding to that of the subunit-type complex or LH1-type complex between BChl *a* and the LH- α - β polypeptides from *R. rubrum* in the OG micelle is 3.8 nm from SAXS measurement at 25 °C or 22 nm from DLS measurement at 4 °C.
- 7 The axial coordination ability was determined by the intensity of induced CD signals of L-histidine methyl ester (L-HisOMe)-linked metallo-mesoporphyrin monomethyl esters (MPMME) in CHCl₃, indicating that the ability was enhanced in the order: ZnMPMME-L-HisOMe > MgMPMME-L-HisOMe > NiMPMME-L-HisOMe.